Invicta: Measurements and Notes

Resonessence Labs
Contents

Introduction iii

1 Technical Measurements 1
 1.1 20Hz FFT 0dB 44.1kS/s . 2
 1.2 1kHz FFT 0dB 44.1kS/s . 3
 1.3 7kHz FFT 0dB 44.1kS/s . 4
 1.4 20kHz FFT 0dB 44.1kS/s . 5
 1.5 1kHz FFT -90dB 44.1kS/s at 16bits . 6
 1.6 1kHz FFT -90dB 44.1kS/s at 24bits . 7
 1.7 1kHz FFT -140dB 44.1kS/s . 8
 1.8 1kHz FFT 0dB 44.1kS/s Headphone . 9
 1.9 Full Spectrum Jitter Test . 10
 1.10 Reduced Spectrum Jitter Test at 16bits . 11
 1.11 Reduced Spectrum Jitter Test at 24bits . 12
 1.12 Jitter Test Detail . 13
 1.13 Frequency Response at 44.1kS/s . 14
 1.14 Frequency Response at 192kS/s . 15
 1.15 DNR vs DC Offset . 16
 1.16 Linearity in 24bit Mode . 17
 1.17 Time Domain Response -90dB . 18
 1.18 Inter-modulation Distortion Test . 19
 1.19 Swept Frequency Low Level Noise Test . 20
 1.20 THD+N vs Frequency (in dB) . 21
 1.21 THD+N vs Frequency (in percent) . 22
 1.22 Cross-Talk vs Frequency . 23
Contents

2 Notes on Audio Engineering

2.1 The Sense of Hearing .. 25
2.2 About Common DAC Specifications 29
 2.2.1 Decibels (dB) in Audio Measurements 30
 2.2.2 Dynamic Range .. 31
 2.2.3 Signal to Noise Ratio 32
 2.2.4 Frequency Response and Slew Rate 33
2.3 Fourier Analysis ... 36
2.4 Switching and Linear Power Supplies 38
2.5 An Invicta from 1935 .. 39

3 System Components

3.1 Inside the Invicta .. 41
3.2 Notes on Components 44

4 Specifications

Bibliography

45

47
Introduction

Music means so much to the human soul. The sounds and songs that accompany us through our lives reflect the emotion of forgotten times, re-inspire us to dream as we did before, hasten our heart beat, and flood over us with rekindled emotions. We were ready for the music revolution: transistor radios of the 1960’s began the change, and through cassette players to portable CDs and to the early MP3 players, we reveled in the music of the late 20th century. The digital music revolution unfolded and showed us how to create, deliver and experience a choice of music unimaginable even a few years before. We are immersed in music: in our cars, on our phones, in our ears as we walk the streets. We owe this to the fabulous combination of digital and analog electronics: digital to flawlessly transport and store our music, yet still and always, analog to render it to our ear. We all know what the three letters “DAC” mean - Digital to Analog Converter - the key element in the digital music device and a part of the revolution.

Up until this point in time there has always been a trade-off in digital audio - the technology was not quite up to it, and commercial realities intruded. Costs had to be appropriate for the mass market. CDs squeezed as much data onto the disk as they could, sampling at 44.1khz was barely mathematically justified, but the digital was difficult and expensive, better to use a steep analog filter than sample faster. And the choice of 16bit encoding; who could dispute that 16 bits of resolution was not more than enough to beat the performance of the vinyl records? Early MP3 players used an admirably clever encoding scheme that put a tempting number of tracks on a relatively small FLASH memory card. This enabled a generation of profitable products, but few would argue that MP3 was anything more than an acoustic illusion, burying detail of the music behind louder sounds in the assumption that the human ear would not miss it.
As the 21st century begins, the technology of digital music leaps forward. It is no longer necessary to compromise the artist by compressing her music. The older trade-offs are no longer relevant. We can embed unadulterated perfection into the digital domain and, at a time of our choosing, recreate every essence of the living sound. You will never go back; hearing 24 bit music sampled at 192khz preserved and rendered bit-perfect without compression is an unforgettable experience. The mind builds an audio picture so intense in detail, so clearly spatially resolved, that the listener is inclined to disbelieve the eyes in favor of the ears that are telling him he is at a different place and time. The audio reality exceeds that of the vision, and the listener is transported into the time and place of the recorded performance.

A rational reader should be skeptical of such claims of great benefit from yet more technological power because, many times, the art of audio engineering has rested more upon the engineering than the art. To even suggest that the ear can benefit from resolutions higher than 16 bits is controversial: what experiment supports the assertion that 24 bits are perceived as any improvement on 16 bits? Why ever exceed 20khz of bandwidth when we know that we cannot hear a 20khz signal? And does not the rigor of mathematical analysis teach that 44.1khz sampling can indeed preserve 20khz - so where does any further technological benefit lie? What shall we conclude about the obfuscation that sigma-delta (Σ∆) modulators apply to the signal - are they not just another MP3-like slight-of-hand designed to reduce the manufacturer’s costs? Indeed it is true that in the race to exploit the exploding market for personal audio devices, rationalizations such as these (no need for more than 16bits, no need for high sampling rates, use of low cost Σ∆ based DACs etc) have driven mass-market designs.

To excel in audio engineering and design is a challenging task. It is challenging because the reality of it differs from that which is suggested by a simple analysis. The reality is that individuals with audiophile credentials (so called “golden ears”) do exist, and one can be trained to listen critically to music and discern faults and imperfections that a casual listener does not hear. Some audio enthusiasts are outstanding in their ability to note differences that the engineer cannot find. Scientific double-blind tests confirm over and over again that two digital audio devices with identical specifications of noise, dynamic range, bandwidth and distortion can be reliably distinguished by the human ear. There is certifiably something that the ear perceives that our measurement
apparatus does not. Indeed, there are examples of outstanding audio designs where the skilled engineer has deliberately failed to optimize a certain parameter (the most common being signal to noise ratio) because listening tests consistently show that the lower quality design (as measured by the instrumentation) sounds better. All the high-end audio manufacturers employ staff trained to listen to new products and they only accept a design that passes a listening test. And the important point is this: these listening tests confirm that the high amplitude resolution (24 bits) and high sampling rate (96k or 192k) make a huge difference to the perception of the audio rendered by the digital device.

To understand Resonessence is to understand this: what if the most technically advanced device was also the one that produced the best results in listening tests? What if a device could absolutely and verifiably dominate in the technical measurements of signal to noise, dynamic range and distortion, jitter, in response flatness, in linearity of group delay, in out of band noise, in the subtleties of transient response and uniformity of noise in operating space, and yet also excel in listening tests? What if it could conform to expectations of modern interfaces, USB, SPDIF, word sync and add yet more such as SD Card based audio? The Invicta is this product.

You are now in possession of the Resonessence Invicta DAC and you can confirm all the assertions above. Connect the Invicta to your quality amplifier and speakers, or use high quality headphones from the front panel, and listen for yourself. The Invicta is capable of rendering 24 bit audio at 192khz from all sources, the most convenient probably being the SD card. Relish your first experience of our product - we hope you find it enjoyable. This document is your guide. In the second section we describe how to use the Invicta in your system - all you need to know to get the best out of your purchase.

Refer to the first section for a quick start guide; this should be sufficient to show how to get the Resonessence Invicta running with either USB or the SD-Card.

The third section is the technical detail including everything measurable about the Invicta – those aspects that can be technically measured are reported here so that you can be assured you are in possession of a technically excellent product – the best we know how to build. You will note that we discuss unusual parameters over and above the industry
standard measurements. These are based on our experiments where we have discovered a correlation between what the audiophile trained listener perceives as good, and a measurable parameter or design aspect.

In section four of this user guide we share what we have learned as we have grown in the audio field. There are pitfalls and aspects of audio shared here that you may find helpful. For example, the use of Fourier analysis is ubiquitous for audio, but sometimes its faults and foibles are not sufficiently explained. Also, the Invicta uses the ESS Sabre32 DAC as the core element. This is a complex device that has many aspects of a ΣΔ modulator, but claims some difference. The manufacturer calls it a HyperStream modulator – you may be interested to know what that is and why it does not suffer from sigma-delta modulator problems. Finally, there are some so-called secrets of design in audio that are not really secrets – all the good manufactures know them – we think it may be helpful to explain them to our customers because we find that many audio enthusiasts who appreciate the Invicta product also appreciate the technical details.
Chapter 1

Technical Measurements

All measurements are taken with the Audio Precision Model 2722. Below is a typical graph produced by the instrument with notation of the elements of the graph. Many of the graphs are in the frequency domain, that is, they are Fourier Transforms (sometimes referred to as Fast Fourier Transforms or FFT’s). Refer to section 2.3 for details on the FFT.

![Annotated example of a typical AP2722 graph](image)

Figure 1.1: Annotated example of a typical AP2722 graph
1.1 20Hz FFT 0dB 44.1kS/s

The Invicta shows low harmonic distortion in the 20Hz test. No high harmonic terms are present and no evidence of spurious tones.

This FFT of a 20Hz signal shows no roll-off for low frequencies and very low distortion up to high harmonics. Testing near the low frequency end of the frequency range can also expose spurious tones (often called idle tones) that some forms of ΣΔ modulators are susceptible to.

Refer to the 1kHz result on the next page for more details of the FFT based tests.

Figure 1.2: 20Hz Signal Sampled at 44.1kHz (as from a CD)
1.2 1kHz FFT 0dB 44.1kS/s

The FFT of a 1kHz signal is the most commonly used technical measurement. This is the Invicta creating a single tone at 1kHz from digital data delivered at a rate of 44.1kS/s which is the rate encoded on a CD. The main component measured by the AP2722 is the 0dB signal at 1kHz – everything else is an artifact of the reproduction. The first thing we observe is that there is a “noise floor” below −140dB and there are “spikes” sticking out of that noise floor to about −120dB. Close inspection shows that the highest ones are 3kHz and 5kHz – these are the 3rd and 5th harmonic of the 1kHz applied. “Harmonic” is the term used to describe simple multiples of the main signal and harmonics are desirable characteristics of musical instruments: they give the musical instrument its characteristic sound, as from a Clarinet or Oboe. However, in an electronic device, harmonics of the main signal are unwanted: they represent failures on the part of the electronic device to create just the main signal provided in the digital data stream. The electronic device is sometimes specified by the Total Harmonic Distortion (THD) which is the ratio of the main signal to the sum of all the harmonic terms, but more commonly the specification of Total Harmonic Distortion plus Noise (THD+N) because this can more easily be measured.

Figure 1.3: 1kHz Signal Sampled at 44.1kS/s (as from a CD)

The FFT at 1kHz shown here demonstrates that the Invicta has a THD+N of −114dB.
1.3 7kHz FFT 0dB 44.1kS/s

The FFT of a 7kHz signal will have a third harmonic component close to the upper end of the band when a 44.1kS/s data rate is used. That harmonic is just visible here; it remains of low amplitude and nothing anomalous is occurring. The fifth harmonic is not present and no evidence of it “reflecting back” below the 20kHz bandwidth is present.

Note that the third harmonic of the 7kHz tone is not increased in amplitude – it is the same amplitude as was present in 20Hz and 1kHz tests. This demonstrates that there is no hint of non-linear limiting (slew rate or similar) in the DAC.

No “rumble” – low frequency artifacts – are visible in the frequencies below 7kHz.
1.4 20kHz FFT 0dB 44.1kS/s

Applying a 20kHz signal in the 44.1kS/s data rate stresses the band limiting digital filter (sometimes called the “Anti-Aliasing” filter). The 44.1kHz data rate is a legacy of the CD era and is just about as low a sampling rate as can be used while retaining a 20kHz bandwidth.

Because the sample rate is so low, the data stream carrying a 20kHz signal must also be carrying a 44.1kHz – 20kHz = 24kHz signal as well. This is a mathematical consequence of the low sample rate and is an “image” of the 20kHz signal. The task of the digital band limiting filter is to remove this artifact and render the signal into a substantially higher sample rate domain for further processing. The performance of the digital band limiting filter can be assessed by looking for the 24kHz artifact. It is a very low: \(< −120dB\).

The digital anti-aliasing filter is explored in this FFT: it is working very well, suppressing the alias tone to less than \(< −120dB\).
1.5 1kHz FFT -90dB 44.1kS/s at 16bits

If the amplitude of the main tone is reduced we can expect the harmonics to disappear into the noise floor. This test applies a small signal (−90dB) to the DAC and verifies that all the harmonics are gone.

In this situation the noise floor is determined by the larger of the DAC inherent noise and the quantization noise of the incoming data stream. Since this is a 16 bit data stream the quantization noise far exceeds any inherent DAC noise: this results in a flat and undisturbed noise floor at the −130dB level and this is entirely due to the use of 16 bit data.

Certain forms of Noise Shaping loop (often simply called Σ∆ modulators) suffer from anomalous patterns that persist in the loop. These are called “idle tones” or “limit cycles” and are self-sustained perturbations in the almost chaotic state variables that do not die away with time.¹ No idle tones are visible in this data.

¹To some degree, idle tones correspond to annoying “rattles” that your car may make but only when going at certain speeds. It is important to put the DAC into a state that encourages these idle tones to verify they are not present.
1.6 1kHz FFT -90dB 44.1kS/s at 24bits

As in the 16 bit test on the previous page, there is no evidence of low-level harmonic distortion in this −90dB test. However, the data stream has about 46dB lower quantization noise and is now below the level of the DAC. Consequently, the noise floor in this graph is entirely due to the inherent noise in the DAC itself. The noise floor is now about −155dB and any very low level idle tones or other anomalies would be visible. There are none.

This is in large part due to the ESS Sabre DAC used in the Invicta. It has a noise shaping loop which differs in detail from a conventional ΣΔ modulator (the manufacturer calls it a “HyperStream” modulator).²

The signals at the −140dB level below 500Hz are harmonics of the mains cycle (60Hz in this case) getting into the signal path probably through electro-magnetic induction. −140dB is an exceptionally low level of power line interference.

²The HyperStream modulator adds a third constraint to the noise shaping loop. It and the ΣΔ modulator must quantize the signal in amplitude and time while shaping the noise, but the HyperStream also constrains the loop dynamics to fix the feedback frequency. This makes it virtually impossible for self-sustained low level oscillations (idle tones) to persist in the loop.
1.7 1kHz FFT -140dB 44.1kS/s

The Invicta has a very low noise floor: so low that a signal of only 0.2µV can be clearly seen in the output.

This FFT is approaching the limit of the instrumentation used to measure the Invicta. Here, a very low level -140dB signal is applied in the 24 bit data stream. This generates a signal of only 0.2µVRms at the output\(^3\). Note that once again there is no evidence of idle tones or spurious response.

Close examination of this graph supports the assertion on the previous page: the -140dB tones in the sub 500Hz region are now clearly seen to be power line induced noise. Due to the logarithmic X-axis used in this plot, they can be confirmed to be 60, 180 and 300Hz – harmonics of the Canadian power line frequency (60Hz) where this Invicta was measured.

\(^3\)It is a testament to the engineering expertise in the AP2722 that it can resolve such a low level signal.
1.8 1kHz FFT 0dB 44.1kS/s Headphone

The Invicta has two types of analog output: the balanced XLR outputs on the rear (with subsidiary unbalanced RCA outputs for those applications that require a single ended output) and a pair of standard \(\frac{1}{4}\)" TRS sockets ("Headphone Jack" sockets) for convenient connection to high quality headphones on the front panel.

The headphone sockets are slightly inferior in terms of performance to the XLR outputs, since it is not possible to maintain a differential signal path to headphones\(^4\). The performance to the headphones is nevertheless very high as shown here in this standard 1kHz 16 bit FFT.

\(^4\)There is no industry standard means to drive stereo Headphones differentially. The three terminal TRS connector standard allows only Left, Right and Common wires to the head set.
1.9 Full Spectrum Jitter Test

After THD and Noise, the parameter that has a large effect on perceived quality is the jitter. Jitter refers to the variation in the time of the digital sample.

To test for jitter, a carefully constructed series of sample points are passed to the DAC. These sample points are at exactly the sample rate (often notated as f_s) divided by four, and imposed upon them is a variation in just the least significant bit (LSB) at about 230Hz\(^5\). Consequently the FFT has a large signal at 11.025kHz and a tiny square wave signal\(^6\).

Jitter may be assessed by inspecting the widening (i.e. “spreading” at the base) of the main tone and any widening of the harmonics of the 230Hz signal. The above graph confirms the presence of the 230Hz square wave at $-90dB$, but does not show sufficient detail of the 11.025kHz signal. On the next page more detail is provided.

\(^5\)The low level tone is actually at $f_s/192$ or 229.6875Hz

\(^6\)The square wave signal measures just below $-90dB$ because the LSB is taken to be the LSB at the 16 bit data width – again as from a CD. The “real” LSB of the Invicta system is that of a 24bit data width, but this Jitter test is conventionally done at the 16 bit level. Refer to [1] for details.
1.10 Reduced Spectrum Jitter Test at 16bits

To see the effect of jitter, this graph is the same as the one on the previous page but zoomed-in to the region of $fs/4$ or about 11kHz.

Jitter on the internal clock of the DAC causes a widening or spreading at the base of the main tone. That spreading may be significant in some DACs - the bottom of the 11kHz tone may spread to cover the two harmonics of the 230Hz tone that are nearby.

This data shows very little spreading at the base of the main tone – nowhere near impinging upon the adjacent harmonics of the 230Hz signal. This shows that the jitter is exceptionally low.

The main tone is very well resolved: there is very little indication of “spreading” which would indicate jitter.
1.11 Reduced Spectrum Jitter Test at 24bits

This is the jitter test for 24 bit data. It shows the same result as at 16 bits; there is very little indication of spreading in the tone. Note the interesting thing about the jitter test set up: because the data in the digital stream is phase locked to the sample rate (that is to say, the encoded frequency is an exact division of the sample rate, \(fs/4 \) in this case) there is no quantization noise present, to any arbitrary level in the digital data\(^7\). The fact that this is 24 bits has made no difference to the result, as expected.

\(^7\)This absence of quantization noise is not particularly surprising: any square wave encoded in the data stream will exercise only two codes (the upper and the lower level of that square wave). Furthermore, if the frequency is an exact division of the sample rate, the same pattern of bits will emerge from the band-limiting filter over and over again. Therefore, there is no mechanism to spread the quantization energy into a wide band and the noise floor is that inherent to the DAC itself, independent of the bit width.
1.12 Jitter Test Detail

This is the Jitter test in the region of the 11.025kHz signal. Note the width of the main signal: it is narrow and nowhere near intruding onto the surrounding 220Hz harmonics. This indicates that the Invicta internal reconstruction clock is good. It exhibits very low phase noise.

We can assume that the recording studio has an essentially perfect timing source (often referred to as a “clock” in the electronic system) and the digital samples have been taken precisely where they should have been in time.

If, however, the DAC used to recreate the analog signal has a badly defined clock – a badly defined timing source – then the precision is lost. Remarkably perhaps, listening tests show that the skilled audiophile will be able to hear a degradation in the sound quality unless the DAC clock is exceptionally good.

The DAC clock is an example of where engineering judgment and audiophile experience diverge. The engineer is inclined to think that jitter of 0.1% of the unit interval (the sample rate) is a good clock. Listening tests prove that the audiophile can hear artifacts down to < 0.001% of the unit interval.

The narrow width of the main signal shows that the Invicta has an excellent reconstruction clock and will not suffer from phase noise induced quality reduction.

(Refer to [1] for many more notes on jitter).
1.13 Frequency Response at 44.1kS/s

In the 44.1 kHz sample rate, 20 kHz is the target maximum audio bandwidth. Within that bandwidth, the system ideally has a perfectly flat frequency response.

This graph shows the Invicta system has about 0.25db roll off at 20kHz – well within the acceptable limit.

The Invicta has less than $-1\,\text{dB}$ roll-off with the 20kHz band for 44.1kS/s rate. In fact, the roll-off is measured to be $-0.25\,\text{dB}$.

From a theoretical point of view, the digital data has an absolute limit of 22.05kHz, but this mathematical limit can never be reached because the band-limiting filter to remove the adjacent alias signal would have to be infinitely steep.
1.14 Frequency Response at 192kS/s

As mentioned in the reference [3], it is now known that the human ear delivers sounds of up to at least 50kHz to the brain. While not consciously reported as perceptible, such sounds may nevertheless contribute to the listening experience — there is some evidence from listening tests to support this assertion.

Fortunately, advancing technology has brought higher sample rates and higher resolution to the audiophile: music can now be acquired in 24bit format with as high as 192kS/s data rate. The common mathematical limit of 22.05kHz is now broken since these data rates can support signals to 80kHz or higher.

This graph shows that the Invicta has a \(-3dB\) bandwidth exceeding 80kHz.

When provided with 192kS/s data rate the Invicta achieves a \(-1dB\) bandwidth of 50kHz and a \(-3dB\) bandwidth of over 80kHz.
1.15 DNR vs DC Offset

A phenomenon seen in Noise Shaping Modulators is tightly controlled in the Invicta: it has very little degradation of DNR with DC input.

Noise shaping control loops ($\Sigma\Delta$ modulators and the HyperStream modulator in the ESS Sabre DAC used in Invicta), exhibit an interesting phenomenon: the dynamic range measured as the signal to noise ratio for a quiet input is not independent of the DC input condition9.

The change in DNR with DC Offset can be quite profound; as much as a degradation of $20dB$. This graph shows that the Invicta and its internal ESS DAC exhibit a small degradation of about $-6dB$ for even a large (more than 90%) DC offset.

9In fact, as reference [2] explains, the phenomenon extends to more than just the DC offset, but to any constant derivative applied as input to the noise shaping loop.
1.16 Linearity in 24bit Mode

Figure 1.17: Linearity of Response with Changing Input Amplitude

Linearity, when applied to a DAC, potentially has two meanings. The first, used in instrumentation, interprets “linearity” as the degree to which the DC transfer characteristic (from linear input code to output parameter) corresponds to a straight line. However, “linearity” to the audio engineer describes how the output amplitude at some given (non-zero) frequency matches that of the applied input amplitude. The two should match exactly, and the deviation of measured output amplitude from the ideal straight line is shown in this graph.

The output amplitude matches that expected from the input amplitude within a tiny fraction of a dB from 0dB all the way down to $-130dB$. This is a very good result.
1.17 Time Domain Response -90dB

Figure 1.18: Time Domain Response for Small Signal

The time domain response resolves a small signal (1LSB at 16 bits) and has a symmetrical response.

This graph shows the Invicta response to a small, three-level signal applied to the input. The signal is ±1LSB around zero at 16 bits.

Despite the small signal, the output is clearly resolved and the waveform noise is low and the response symmetrical.
Harmonic Distortion of a single input tone gives rise to spurious signals at multiples of the input frequency. For example, a 1kHz signal will generate a second harmonic at 2kHz, a third harmonic at 3kHz etc. In an audio DAC, the bandwidth is limited, typically to 20kHz, and so a simple test for harmonic distortion above 10kHz will not generate visible errors: all the harmonics are 20kHz or more, hence outside the bandwidth and not seen.

Although invisible to a single tone, harmonic distortion will “mix” (that is, mathematically multiply) with any other signal in the input and can be made to create in-band products that are visible. Specifically, the third order products (such as $2f_1 - f_2$ and $2f_2 - f_1$) cause distortion products adjacent to the frequencies f_1 and f_2, as are visible in the graph above.

In the graph above, 19kHz and 20kHz tones are applied simultaneously and distortion products at 17kHz, 18kHz, 21kHz and 22kHz are visible. These spurious tones show the distortion of the 19kHz and 20kHz signals even though those distortion products are far out of band.

Inter-modulation products are small in the Invicta, being less than $-120dB$. They are no more than the distortion products measured at low frequencies.
1.19 Swept Frequency Low Level Noise Test

The noise level of Invicta can be explored as a filter passes over a very low level tone. Once the filter moves off the tone, the noise drops quickly to a low level indicating a very low noise.

The noise of the DAC may be assessed by injecting a certain low level signal and sweeping a narrow band filter through that signal. In the ideal case, if the filter were perfect and the DAC had no noise, there would be no output signal at all until the filter passed over the low level signal frequency.

The results on this graph approximate that situation. In three cases the input signal was $-90\,dB$ and in one case the input signal was $-120\,dB$. In all cases the peak signal is the expected one, either $-90\,dB$ or $-120\,dB$ as input10.

10Refer to various articles in Stereophile magazine for a more detailed explanation of this somewhat specialized test.
1.20 THD+N vs Frequency (in dB)

Total Harmonic Distortion plus Noise can be conveniently measured if a sharp notch (band reject) filter is placed over the input tone. The filter will remove the input tone and the RMS value of everything out of the filter then represents both the noise and any harmonics present\(^{11}\).

If an input tone is swept across the audio band and a similarly swept notch filter tracks that signal, then the output will be the THD+N vs Frequency. This is the method used here and the resulting graph shows how distortion and noise vary with frequency\(^{12}\).

\(^{11}\text{Because of this convenient method – namely the notch filter over the input tone – THD+N is much easier to measure than THD on its own. This is why most audio measurements report THD+N and not just THD.}\)

\(^{12}\text{This is an important test because certain forms of DAC may show an anomalously low THD+N in the }1kHz\text{ region where THD+N is conventionally measured.}\)
1.21 THD+N vs Frequency (in percent)

The THD+N of the Invicta is less than 0.0002% for all frequencies in the audio band.

THD+N is also commonly reported as a percentage figure. This was appropriate when the state-of-the-art created THD+N numbers just below the 1% figure, but today, since technology has improved, THD+N in percent is less helpful: it has become a matter of carefully counting the zeros before the significant fraction.

However, to be complete, this is the THD+N vs. frequency as measured in percentage of the applied signal.
Cross-talk is the undesirable tendency of one data channel (for example, the Left channel) to “feed-through” or cross-talk into the other channel (Right channel). This is an important parameter for those audio systems that recover the stereo information from certain compound signals (such as the V-groove in a vinyl recording, or the multiplex signal in an FM transmission), but in modern digital technology the data source can be assumed to have a perfect separation of channels.

Measuring cross-talk in a modern digital system such as a DAC will expose any failure in the design to retain this separation of digital data. Cross talk in a modern system reflects a finite power supply rejection, or a less than perfect arrangement of ground signals in the system.

The graph above shows cross-talk vs. frequency. Its slight rise suggests a capacitive coupling; nevertheless, this measurement of no worse than $-130dB$ even at 20kHz is a good result.

Cross talk in the Invicta is excellent: it remains below $-130dB$ for all frequencies.
Notes on Audio Engineering

2.1 The Sense of Hearing

We have evolved the remarkable sense of hearing over millions of years. Each of us has the ability to detect variations in pressure traveling as waves in the air around us. The human ear is an astonishing sensor of these sound pressure waves: the pressure difference may cause our eardrum to move less than the diameter of a hydrogen atom, and yet this tiny disturbance is accurately delivered to our conscious mind to allow us to act upon it. The dynamic range of hearing is breathtaking, being very much higher than the range of vision. The ratio of the smallest perceptible energy to the highest tolerable energy is about 130dB, which is ten trillion to one or 10^{13}.

Experiments show that the ear delivers information to the brain up to 50kHz, not 20kHz as commonly assumed.

It is commonly thought that the human ear detects sounds in the frequency range of a few Hertz to 20kHz. This is supported by experiments where test subjects are asked, “Can you hear this sound?” and 20kHz is the highest frequency where a person with good hearing will report that they can hear it. However, we now know that this is misleading: if a subject is placed in a brain scanning device we can show that the brain is responding to sounds up to about 50kHz.[3] It is simply that the conscious mind is not aware of sounds above 20kHz but something in the brain does register the higher frequencies. Although not presented to the conscious mind as an audible tone, the presence or absence of higher frequencies does have a measurable effect, and we may speculate...
that this phenomenon is one source of the listener’s perception that a system resolving these higher frequencies “sounds better” in listening tests than one that renders only 20kHz of bandwidth.

Another common opinion now proved wrong, is that the ear is a passive device similar to a microphone, faithfully translating sound pressure into some internal format that the brain can use. In fact the ear’s interaction with the brain is far more complex. The cochlear is an active amplifying device\[4, 5\] consisting of at least two mechanisms: the so-called outer hair cells and the inner hair cells. The outer hair cells are known to be adaptive, each has a little “motor”\[6\] attached that tunes the reception and this is how the ear achieves its remarkable frequency resolution - a resolution far higher than a set of simple resonators could achieve\[7\]. We may speculate that the active nature of the hearing process supports the conclusion that audiophiles have an ability to sensitize their hearing, the brain taking an active role in the listening process.

The sophistication of human hearing far exceeds that of other animals, bats being a notable exception. Some animals hear higher frequencies. Birds and frogs are known to posses specific neural processing of audio signals to find mating calls buried in what would otherwise be random noise. But the human sense of hearing is remarkable: the ear and brain are one, perception arises in the higher evolved regions of the brain where audio signals have been “spike encoded”\[8\] and filtered into elemental representations of music and spoken words. It is likely that the human ability to speak arises at this higher level where the mind is working on significantly pre-processed signals. We may speculate that music appreciation also operates at this higher level. An imperfection or fault in rendition of recoded music will propagate up to this higher level and be perceived as “something wrong” with the sound, but the detail of that error has been suppressed by the unconscious pre-processing. This will give rise to apparently meaningless assertions of the audiophile such as, “I listen to the ’gaps’ between the sounds” or, “it is the noise ’behind’ the transient that is important”.

In these higher centers of the brain the sounds and sights are integrated into one whole, and surprisingly perhaps, experiments show that the eyes can effect the ears and cause the ears to “line up” the three dimensional audio image they create with the eyes\[9\]. This is no doubt why audiophiles commonly close their eyes to appreciate fine music.
The ear’s ability to resolve signals in time is equally remarkable: we can easily calculate that a resolution angle of five degrees in sound location corresponds to less the 50µS in time difference\(^1\). Clearly, therefore, the brain is able to process at least the difference in arrival time of audio signals on a time scale significantly less than 100µS.

Given this degree of sophistication in our sense of hearing, we can only marvel at the fact that audio engineers can record sound at all. Who would imagine that the vibrations of a speaker cone, driven through necessarily imperfect electronics, picking up a signal from a transducer following a v-shaped scratch in the surface of a vinyl record would work as well as it does? Who would imagine that a microphone could do a tolerable job of transposing sound pressure into an electronic signal that meets the quality level the ear expects? Perhaps, in fact, none of these things (vinyl records, speakers, microphones) work well at all - perhaps all the magic lies in the ear which extrapolates across errors, fills in imperfections and delivers to our conscious mind a remarkably consistent audio picture where a great many “details” are actually psycho-acoustic “patches” over an imperfect signal.

There is a great deal to support this latter hypothesis. The existence of MP3 players essentially proves it: in MP3 encoding the sound signal is perversely distorted from its pure original, but the perversion is carefully constructed to match the ear’s ability to extrapolate detail, to fill in the missing structure. There can be no surprises, no unexpected detail in MP3 music - they are simply not there. You will not be moved to comment on fine detail in the MP3 playback, that detail is in your head - your own ultra-sophisticated audio processing has cleaned up the MP3 signal to an acceptable level.

However, there is an even more remarkable example of the pre-processing power of the human ear. In our modern world we have moved on from the outstanding technology of the Victorian era that brought us color TV via electrons moving in the vacuum of a CRT tube, to the visually more stunning (but technically lower resolution) image on Plasma or LCD TVs. These new TVs appeal due to their flatness: we hang them conveniently as we might hang a picture on our wall.

However, flat TVs do not provide enough room to include a quality

\(^1\)Assuming the speed of sound is 340m/s and the ears are separated by 15cm, then for a 5° angle resolution we have an additional path length of 0.013 = 0.15 \ast sin(2\pi\times5/360) meters which represents 0.013/340 seconds or 38µS.
loud-speaker. The low end (sub 200Hz) response of a typical flat TV loud-speaker is not just poor, it is almost completely absent. It is mechanically unable to re-create a sound less than 200Hz or so without significant attenuation. To try to compensate for this, some early designs boosted the bass response causing the drive signal to rise as the frequency rolled off. But this does not work - the speaker simply starts to distort more and it is not a viable solution.

The solution that is now used in next-generation small loudspeaker design exploits the sophisticated pre-processing of the human ear. It is found that when a low frequency signal of say 100Hz is presented to a listener he will, of course, respond that he hears 100Hz. But astonishingly, if the fundamental of that 100Hz is removed, leaving only its harmonics, the listener will still report that he hears 100Hz, despite the fact that no signal at 100Hz is present! This is a testament to the power of the ear and brain - something is profoundly wrong with the signal received by the ear: it is missing its fundamental. But the brain and ear “know” that it must be there because its harmonics are present - and remarkably, below the level of the conscious mind, this missing fundamental is added back into the signal and the conscious mind hears the 100Hz signal\(^2\). The TV DSP engine implements this psycho-acoustic “trick” and creates appropriate harmonics to send to the speaker. The speaker is not required to process any signal less than about 200Hz, but the listener hears the sound of 100Hz or lower emerging from the speaker. It is a remarkable example in the audio domain of a phenomenon used extensively in the video world: the electronics is exploiting what is known of the brain’s processing of the senses and this creates effective and commercially desirable home electronics.

All this understanding of the process of hearing should help us appreciate the audiophile: when he tells us that he can hear the difference between a sigma-delta modulator and a non-oversample DAC, we should not be dismissive. It is likely that he is attuned to some subtle aspect

\(^2\)The knowledgeable reader will question this: how can the signal pattern from the 100Hz with missing fundamental be distinguished from a signal of 300Hz (the first harmonic actually present)? The answer is that it can because the relative amplitude of the harmonics is different. The 100Hz with no fundamental has a tone at 500Hz (its fifth harmonic) in addition to its 300Hz tone of the third harmonic. But the real signal at 300Hz has no 500Hz component: its third harmonic (the first one) is at 900Hz. The brain can apparently easily recognize and sub-consciously sort out this difference. The 100Hz with no fundamental is perceived as 100Hz, the 300Hz is perceived as 300Hz, despite the fact they share a common 300Hz tone.
of the hearing process that we may miss, and any amount of comparing typical audio measurements (frequency response, THD, etc) may not capture the distinction.

In fact, the typical technical measurements do not capture the subtleties. Many years of testing, many trials of various techniques have taught us, here at Resonessence Laboratories, that second and third order effects (over and above the common measurements) are what make a great audio DAC as opposed to a good audio DAC.

First we excel at the common specifications, then we endeavor to excel in the areas that make a great DAC. We do not make devices that exploit any psycho-acoustic artifacts, rather we aim to deliver to the audiophile ear the most perfect rendition of the sound that is technically possible. The audiophile does not listen to us - we listen and learn from the audiophile.

2.2 About Common DAC Specifications

Audio engineers strive to please the customer and deliver verified high quality components to the discerning listener. To differentiate their products (and perhaps justify a higher selling price), the engineer will document the performance of the product using industry standard instrumentation. Consequently, specifications provided are those that the instrumentation can measure: if the machine cannot measure it, it cannot be listed in the technical specifications table. This is obviously scientifically justified, since otherwise the competition to create the best audio devices would degenerate into matters of opinion rather than of verifiable measurements.

But what is the best course of action when the audio engineer is persuaded that a scientifically verifiable difference (in double-blind testing) does actually exist and that this does not correlate to any technical measurements? This is a difficult situation since this difference between the good and the excellent audio product cannot be reduced to a specification. Are we simply to trust that the respected customer (or reviewer) has no bias and does possess the hearing acuity needed to appreciate our products? The answer, in the current state of the measurement art, is yes - that is exactly what we are going to do - the final judgment lies in the ear of the audiophile.
However, Resonessence would like to promote development of the audio measurement art and to this end share our current understanding of where technical measurements may fail to capture the audiophile’s perception of quality. Please be assured that the following notes on why these technical measurements may fail to do justice to the listener is in no way designed to justify a less than perfect technical measurement of the Invicta DAC: you will find the Invicta to excel in the technical measurements.

2.2.1 Decibels (dB) in Audio Measurements

The range of sounds that the human ear can perceive is staggering. The loudest sound (which is painful) has more than 1,000,000,000,000 times more energy that the quietest sound (which is just perceptible in ideal conditions). For such a large dynamic range a logarithmic scale is appropriate and audio engineers use a term developed in the early 20th century called the “decibel”, which is one tenth of a “bel”. A “bel” is never used on its own, even from its earliest conception, the decibel (a tenth of one bel) was proposed as the basic unit since this was approximately the loss in signal over one mile of telephone cable and was thought to be the minimum change in amplitude that a listener would notice. One bel is a ratio of ten to one, and so one decibel is a ratio of $10^{0.1}$ in power.

Given that one decibel (dB) is a tenth of the logarithm of the power, when we review a graph showing performance of an audio system we can immediately conclude that power changes by a factor of ten for every ten decibels. For example, should we decide to listen to our favorite rock band at 0dB and then to our favorite classical guitarist at -40dB, the difference in energy delivered to our ear is 10,000 to 1, because -40dB is a ratio of $10^{40/10}$ or 10,000 to 1. And -40dB is not that quiet: unless we have ruined our ears in early life actually listening to rock at 0dB, we will be able to hear to maybe -90db, which is an energy ratio to the 0dB rock band of 1,000,000,000 to 1.

In the electronic system, the voltage (which is usually the parameter processed as analogous to the displacement of the microphone and speaker diaphragm in the electronic representation of music) encodes not the energy, but the square root of energy. Consequently, when the

3Which the author, sadly, has done.
2.2. ABOUT COMMON DAC SPECIFICATIONS

audio engineer considers decibels he has in mind that 20\text{dB} \text{ (not 10\text{dB})} corresponds to a factor of ten in voltage. This means that when the audio DAC is processing, for example, 0\text{dB} as 1V rms, it will process −40\text{dB} as one hundredth of 1V rms or 10\text{mV} rms. We may rightly conclude that in order to achieve the −130\text{dB} DNR of the Invicta, the 4V rms 0\text{dB} output must have a voltage noise of less than 1.25\mu V \text{rms} since this is \(4 \times 10^{-130/20}\).

In audio measurements of a DAC such as the Invicta, \text{dB}, a dimensionless unit is expressing the ratio to the full scale that the DAC can produce. Full-scale is 0\text{dB} and −20\text{dB} is one tenth of the full scale voltage which, when applied to your headphones or speakers, will produce 1/100 of the energy that full scale would produce.

2.2.2 Dynamic Range

This parameter attempts to capture the ratio of the loudest signal to the quietest signal. The loudest signal is limited by the electronics to a certain voltage, it may be as much as 4.6Vrms. The quietest signal is limited by noise within the electronics and may be as little \(1\mu V\) rms. Dynamic Range is commonly specified by the acronym “DNR”.

There is a “trick” that certain audio devices employ to reduce the noise and hence improve the dynamic range: the electronic system monitors the signal level, and when it detects silence, it shuts down certain noise making elements in the system and a technical measurement will show a very low noise. However, this “muting” of components is judged to be an unfair comparison since the silence may be “in the background, behind” a musical element in the program. If the electronic system was unable to enter this “shutdown” mode, what then would be the dynamic range? Surely this more accurately represents the listeners perception.

Consequently, in order to prevent a spurious shutdown in those devices (which are admittedly pretty rare these-days) the DNR test is done in the presence of a small (−60\text{dB}) tone at 1kHz. The measurement equipment removes this small tone and adds up all the other energy in the signal and reports this sum, in ratio to the 0\text{dB} signal, as the Dynamic Range.

\text{dB’s} can be confusing: they actually refer to power and ten of them make a factor of ten in power level. But electronic audio devices process volts and energy is volts squared, so in volts it takes 20\text{dB} to make every factor of ten!
2.2.3 Signal to Noise Ratio

This parameter attempts to capture the ratio of the loudest signal to the quietest signal in a similar way to the Dynamic Range measurement. But unlike DNR, Signal to Noise is assessed by simply measuring the output with no signal applied and expressing this as a ratio to a reference level – in the case of a DAC, the reference level is full-scale. Signal to noise is commonly specified by the acronym “SNR”.

Note that if the device is employing some sort of muting, this may activate and make the SNR appear very high. It should be said that the muting trick is not entirely without merit, since it will reduce any hiss from speaker when the volume level is loud and the music (vinyl, tape or CD) has finished playing.

Given this description, you may well be surprised to see that the Invicta has an SNR that slightly exceeds its DNR: does this imply it uses a muting trick to reduce noise? The answer most assuredly is no - no such muting trick is employed. The Invicta and other high performance audio devices have a very high dynamic range and that dynamic range is limited by a phenomenon that causes the noise floor (as measured with no signal) to rise slightly in the presence of a signal.

This phenomenon comes from two sources. The first is the noise shaping loop of the ESS Sabre DAC itself. It, like all noise shaping loops, is a strongly non-linear device (non-linear in the mathematical sense, bordering on the chaotic) and the noise characteristic differs very slightly with signal level: the noise is slightly lower from the ESS Sabre DAC when it has no signal to process. This reduced noise is accurately delivered to the XLR connectors on the back of the Invicta because we take great care to introduce the absolute minimum of additional noise in the signal path. Our signal path noise is so low that the Sabre DAC noise change is visible in the specifications.

Another source of noise in the presence of the signal only becomes apparent at very low noise levels and that is due to the finite gain of the op-amps used in the signal path. As the op-amp is forced to deviate from equilibrium to drive its own internal dominant pole capacitor (and perhaps the output load), its own noise level can rise. However, we see no evidence of this second source of noise in the Invicta.

The Invicta does not use any tricks to artificially improve SNR.

\[4\] Probably because the ADI797 op-amp used in the signal path has a DC bootstrapped compensation capacitor (and it has an additional AC-coupled feedback...
2.2.4 Frequency Response and Slew Rate

To what degree can the sound pressure waves that we hear be translated into electronic form and reproduced? To answer this question in its most basic sense requires us to understand the limitation of any system that attempts to process the analog of a “real-world” parameter in some other domain. This rather grand-sounding assertion is not difficult to understand if we break it down into its component parts. An example will help.

Suppose (prior to our high-tech world where we may make a phone call) that we want to know the temperature on an island a few miles from our research base on the mainland. To do this, we employ an attendant on the island and give him a flag that he may set to a certain height on a flag-pole that we can just see from the base. We tell our attendant that the lowest point on the flag pole is to represent zero degrees (0°C) and the highest point is to represent one-hundred degrees (100°C).

Each day he sets the flag to the appropriate height and we, being able to see it from our base, can then know the temperature on the island. The height of the flag has become analogous to the temperature: the height is an analog of the temperature. It is the height we see, not the temperature itself, but since the height is analogous to the temperature, we can note the temperature on the island.

Where does this system of making an analog of the “real-world” parameter (temperature) in the other domain (height of the flag) fail, and what artifacts is it prone to experience?

It should be obvious where the first problem may lie: what if the temperature goes to -10°C? This is beyond the range of the analogous quantity and the system fails. Similarly above 100°C. This primary failure mode contributes to limited dynamic range. But another potential failure relates to how quickly the flag can be raised or lowered. It should be no problem to get a temperature reading each day: the attendant can easily set the flag once each day, but what if we need to know the temperature every ten seconds?

Asking for the temperature every ten seconds causes a problem because it is difficult for the attendant to raise and lower the flag so frequently. Hence there is a frequency limitation in this analogous system - it
cannot communicate changes in the temperature that occur faster than the attendant can raise and lower the flag. Any variation occurring on a timescale less than about ten seconds is not capable of representation in the flag height system due to a bandwidth limitation.

Note that this has nothing to do with the system being digital: this is a analog system we are discussing here. There is no encoding of the height into a number, no discrete time at which the attendant can operate—in principle he can continuously adjust the height of the flag to any arbitrary accuracy. This is an analog system, but clearly it has a finite bandwidth.

But that is not all: what exactly prevents the attendant being able to change the flag every ten seconds? We can imagine that it is due to the need to pull the rope as quickly as possible from one height to the next, and no matter how he tries, that rope can only move through his hands at a certain speed. This gives rise to an interesting phenomenon called “slew rate limitation” that makes frequency response (in an analog system) a non-linear parameter. If asked how quickly he can signal a change in temperature the complete answer is this: if required to move just a few centimeters, as will be the case if the temperature changes a little, he can probably move the flag as fast as once every two seconds. But, if asked to move the flag over five meters or so, much further than before, he can change the flag only every ten seconds.

The frequency response in therefore non-linear: it depends on how large a change we are considering. In the realm of electronics there is a strong tendency when asked, “What is the bandwidth of your system?”, to answer with what is more accurately called the small-signal bandwidth—that bandwidth where the flag need move only a little in our analogy. Any deviation from this bandwidth due to large signals is referred to as “slew-rate limitation”.

These two parameters, bandwidth and slew rate, are available for all op-amps produced today and the op-amp manufacturer expects the engineer to realize that the op-amp will not in fact show the bandwidth

5In fact, the situation is even a little more abstracted than this suggests. The small signal bandwidth is that bandwidth that would be present with an infinitesimally small signal—a mathematical abstraction due to the CAD (Computer Aided Design) tools used when designing a circuit. SPICE, the common design tool, performs AC analysis using a linearized model. True bandwidth analysis must use a less commonly available, but more advanced, method called Periodic Steady State (PSS) analysis.
specified in the presence of large signals where slew-rate limitation is dominant.

In audio equipment, if an input signal of fixed amplitude is swept from 10Hz to 50kHz and the output signal amplitude measured vs. this input frequency, then surely we have captured the frequency response of our audio device. Indeed we have, and it is likely that the bandwidth was around 20kHz. But we may ask this: when the bandwidth started to roll-off, was this due to the generation of harmonics at 40kHz, 60kHz etc. (the multiples of the input signal) or did the output signal reduce in amplitude without generating harmonics?

If it was the former case, that is, if harmonics were generated, then we are likely suffering not from limited bandwidth per-se, but from slew rate limitation. In this case it is almost certain that the bandwidth is not independent of the signal amplitude: it will appear higher for a lower input signal\(^6\).

Consequently, two systems of equal bandwidth, at a given signal level, may differ in detail. One may show a bandwidth limitation independent of amplitude and generate negligible distortion even as the bandwidth rolls off. The second system may show a variation of bandwidth with signal amplitude and generate harmonic content as the bandwidth rolls off. Given our increasing understanding of the human ear, it is almost certain that the audiophile will hear these systems that have the same technical specification of bandwidth, differently\(^7\).

\(^6\)Even this is not as clear as it may be and a full analysis must ask: “How did you measure the output signal when you were sweeping the input?” If the output signal amplitude was measured only at the input frequency, then the energy in the harmonics was not considered. We may well ask, “How does the ear perceive a finite bandwidth?” It may perceive an attenuation as the ratio of the output signal to the input signal at that given frequency, but it may perceive attenuation as the ratio of total energy output (including harmonics) to the input energy.

\(^7\)Again, the knowledgeable reader will question this in at least two aspects. Firstly, surely this analysis is flawed since the system with a bandwidth dependent on amplitude will show a higher distortion and therefore a true A-B comparison of this phenomenon is not possible: the posited systems must differ in distortion specification and hence how can they be a fair comparison for the bandwidth issue? The answer is that in an audio system, distortion is specified up to a certain bandwidth. For example, the sum of the energy in harmonics up to 22kHz is compared to the fundamental and this is reported as the THD (Total Harmonic Distortion). Despite the name, this is only the “total” up to a given bandwidth, not the true total. Also, commonly, the THD test is done at 1kHz input signal. In a digital system, THD can be the true total due to the phenomenon of aliasing, but in an analog system, those high harmonics can go unaccounted for in THD. And, for this particular case of lim-

Slew Rate induced distortion may not show up in the output of the system as distortion, but it does begin to roll-off the in-band fundamental. Consequently, it makes a non-linear (amplitude dependent) frequency response.
CHAPTER 2. NOTES ON AUDIO ENGINEERING

2.3 Fourier Analysis

Fourier Analysis is the use of a procedure that takes a signal expressed in time and transforms it to one expressed in frequency. This “Fourier Transform” is but one of a class of similar mathematical transforms that can change the representation of something reversibly from one form to another. Fourier transforms are common in audio applications. We may ask about the amplitude of our music, its start and stop time and so forth. These are all parameters of its expression in the time domain. It is interesting also to ask about its lowest frequency component, its highest frequency component and so forth; these are parameters of its expression in the frequency domain. In other words, of its Fourier transform.

Fourier transforms may be appreciated by a simple analogy. Imagine that the consumption of electricity in New York was recorded every few minutes by the utility company for a period of some years. This electricity consumption record could be analyzed and a surprising amount could be learned. For example, we could ask, “What is the variation of electricity consumption in each day?” The daily variation would be significant as lights come on in the evening and meals are cooked. We could ask, “What is the variation of electricity consumption per week?” The weekly variation would show the difference of weekend consumption. Similarly, the yearly variation would show the temperature since heaters are on more in the winter. It is possible that evidence for global climate change would be present in the year to year variation. This method of asking, “What component in this data changes every day/week/year?” is Fourier analysis: the representation of the data as the amplitude of cycles of various lengths.

It is well known (and has been since the early 19th century) how to find the components of any frequency in any data set, but a particularly efficient means to rapidly search for all frequency components at the same time, did not come into general use until the mid 1960’s and the

notated bandwidth, the harmonics are always high, since the bandwidth is presumably somewhere near 20kHz at least. Secondly, what meaning do higher harmonics above the bandwidth have—the bandwidth is limited (that’s the whole point) and this removes them does it not? Actually, not necessarily. It depends on where in the signal chain the slew-rate limited bandwidth is occurring. It can be that the output stages are not slew-rate limiting, but the earlier stages are. In this case the harmonics of the slew rate limiting element are passed to the headphones or speakers, and despite being higher frequency, we now know the brain perceives them at some level.
2.3. FOURIER ANALYSIS

advent of digital computers8. Certain parameters, frequency response is the obvious one, are clearly descriptions of the frequency domain representation of a signal, but others, such as distortion, are best appreciated in the frequency domain as well9. Distortion in the time domain is a deviation from the ideal amplitude that varies with the amplitude itself. Distortion in the frequency domain is conveniently collected into multiples (harmonics) of the fundamental signal and so is easy to appreciate, visualize and compare.

Having explained the significance of Fourier Analysis, it is probably a surprise to realize that the graphs that we see (including the ones presented in this document) are not the Fourier Transforms of the signal! They cannot be, because in the frequency domain a signal is not a real quantity: it becomes a complex quantity (in the mathematical sense) having both phase and amplitude. The graphs we produce on the measurement machines, and print in documents such as this one, are just the amplitude component of the complex quantity at that frequency.

The absence of phase information in the plots we see makes it impossible to correlate the perceived clarity of the music, its tone, precision and “warmth” with the graphs. One system that may sound pleasing to the ear may have a certain pattern of harmonic content (as from a tube amplifier) identical to another system, but the second system may sound bad. This is because the frequency plots do not show the relative phases of the harmonic content.

The situation is even further compounded by the fact that the phase may vary non-linearly with amplitude of the signal, and it may not even be a “static” quantity: it conceivably may vary with time10 which

8This “invention” of what is called the Fast Fourier Transform (or just FFT) has occurred at least two times in recent years and neither was actually new. It is remarkable to note that FFT, as it is called today, was known to Gauss (a brilliant German mathematician 1777—1855) in 1805.

9Noise is interesting since it can be appreciated in both the time domain and frequency domain in just about the same way: as a random deviation around the zero point.

10This suggestion, that the phase of a given harmonic may vary with time, may sound unlikely, but a pleasing Guitar amplifier exhibits a “collapse” (voltage drop) of the tube based rectifier circuit when a large power output is called for. The power supply recovers over many milliseconds and during that time the tube amplifier is undoubtedly experiencing a changing frequency response which will translate into a time dependent phase shift.

Analysis in the Frequency Domain is essential to uncover artifact and quality issues in an Audio system...
the brain is likely to interpret as a modulation of the distance to the sound source.

Instrumentation based on high performance ADCs gathering a record of data can preserve both phase and amplitude and further can capture the time dependent aspects. Instrumentation based on a swept filter and RMS meter cannot capture phase or time variation.

2.4 Switching and Linear Power Supplies

The cost and weight of “magnetics”, that is inductors and transformers, can be relatively high, particularly when the frequency at which they operate must be low. Classically, a power supply operating at 50Hz (the mains supply in Europe for example) needs to be relatively large, heavy and expensive. How much better power supplies could be if they could run at a rate of 100’s of kHz. Indeed they would be better: the faster that the circuit operates the less the size, the lower the cost of the magnetics that it needs. Hence the commercial pressure to develop a new kind of power supply: the switching power supply.

All new things win in the market place when they have just sufficient functionality, and crucially, lower price. But if they can add a benefit at the same time, then their adoption will be rapid. A switching power supply manages all three and its additional functionality is the ability to operate from 115V to 250V without user intervention.

In consumer electronics the art and manufacture of switching power supplies is so advanced that rarely does a manufacturer bother to design a new one. Stock switching power supplies in consumer electronics are today a commodity item provided by the subcontractor: you may have your product assembled in the Far East and the contractor will provide his own low cost power supply for your product.

Switching power supplies have enabled low cost, good quality consumer audio and, together with Class-D chips, a 7.1 surround sound home theater may be purchased for less than the price of the early DVD players.

Why, then, not use a Switching Power Supply every time? Sadly, the very things that enable the switching supply to work, namely high operating frequency, good efficiency and low cost magnetics, prevent its
use in high precision, very low noise circuits. The high frequency aspect radiates electro-magnetic noise in the vicinity and the high efficiency means fast slew rates and high currents, which again contributes to high emissions. The unit may be enclosed in a metal box, the IO may be inductively snubbed, but experience shows that despite great efforts, the noise will somehow break out and be detectable in the low noise circuitry.

For all these reasons, Resonessence uses conventional, low operating frequency (mains frequency) magnetics. Still decoupled with series inductors, and smoothed with vastly over specified capacitors11, the linear power supply feeds high performance linear regulators to distribute power12.

\section*{2.5 An Invicta from 1935}

It seems that the name “Invicta” has been used for an electronic audio device for many years. In approximately 1935 the name was used on a tube (valve) radio, notable because of its use of eight preset stations. (Figure 2.1: Tuning window of the “Invicta” 1935 tube radio)

This example of the Invicta is from the Amgueddfa Ceredigion Museum

11Because electrolytic capacitors are the weak spot in long term life

12But even these high performance regulators are not sufficient: they are supported with discrete and additionally filtered devices that handle the primary current flow. The off-the-shelf high performance regulator chip is used for its internal reference, current limit and closed loop controller only.
in Aberystwyth, Wales. Resonessence Labs express their thanks to J J Danks (Jez) of the Aberystwyth Museum for kindly providing access and photographs of the 1935 Invicta13.

Electronic components have changed beyond all recognition since 1935 but, even today, the circuits designed by the pioneers of radio are still used.

Tube radios, such as the Invicta pictured here, used amplifier configurations in tube technology that are in use as transistor configurations today.

Figure 2.2: The Invicta tube radio from 1935

13Resonessence Labs has no connection to the manufacturer of this radio, but we were pleased to see that the name “Invicta” was associated with an electronic device as long ago as 1935.
Chapter 3

System Components

3.1 Inside the Invicta

Digital and Analog sections inside the Invicta are carefully separated. Metal walls prevent electro-magnetic coupling.

Figure 3.1: Invicta Internal Components
• Invicta uses a linear power supply and a toroidal transformer. This helps to reduce induced noise and ensures that any high current paths are, at most, moving at the mains supply frequency. The toroidal transformer helps contain any electro-magnetic fields generated. All the capacitors are over-specified in order to increase lifetime and each regulator chip is noise-reduced by addition of a discrete buffering stage such that power supply currents actually flow in well-controlled discrete devices.

The analog signal paths are separated onto small, individual boards. Ground currents for each board (XLR, Headphone etc.) are managed separately.

Figure 3.2: Analog boards

• To maintain the performance of the ESS Sabre DAC, its power supply is generated locally on a separate board. This is key to management of ground currents and power supply induced noise. On that same board, amplification and signal conditioning circuits associated with the particular function (XLR or Headphone) are assembled in a crafted current environment. Supply, ground and signal currents are managed separately — a ground plane is not used, but a flooded area on the board is present to define boundary conditions for any electro-magnetic induction. To a first order, no current flows in this flooded area\(^1\).

• The digital engines of the Invicta are a series of MicroBlaze\(^2\) soft processor cores instantiated as needed in the Invicta FPGA. The cores run independently and microcoded routines handle all user

\(^1\)Experience teaches that the ground plane is not used to carry any DC currents; these DC currents are sufficient to induce ground coupling at measurable levels. Rather, it is better to provide discrete traces on the board to manage current flow precisely and leave the “ground plane” as a magnetic and electric field shield.

\(^2\)“MicroBlaze” is the name for the Xilinx soft processor core created within the multi-million gate FPGA of the Invicta.
IO and rear panel interfaces. Critical audio paths in the digital engine are “hardcoded” meaning that the bit widths, truncation errors and so forth are all managed.

- Invicta uses an OLED (Organic Light Emitting Diode) display to reduce noise. The more common VFDs (Vacuum Fluorescent Display) are bright and clear, but require a relatively high drive voltage and switching speed which tend to radiate noise. OLED displays operate with low level signals and experience shows that noise can be managed more effectively with this type of display.

- The master clock of the Invicta is a precision, ultra-low phase noise oscillator. The precise phase and frequency relationships of these clocks to the audio stream is crafted to best exploit the Asynchronous Sample Rate Converter in the ESS DAC. The resulting audio signal actually exceeds the performance of the industry standard measurement machines as verified by an ultra-high performance ADC. This graph shows non-A-weighted (wide-open bandwidth to 96kHz) THD+N of the ES9018 in the Invicta vs. the outstanding AP2722 signal generator.

The clock (timing source) is critical. Although the Sabre DAC has on-chip re-synchronization to its master clock, higher performance can be achieved by controlling the relative phase of the system and the DAC clocks.

Figure 3.3: Invicta ES9018 compared to Audio Precision AP2722
3.2 Notes on Components

Passive components can easily be overlooked. They seem insignificant compared to the complexity and time taken to construct the DAC, USB or Micro-Controller but, it would be a mistake to underestimate the impact that a poor choice in passive components can have.

The first high quality audio products were characterized by through-hole high performance passives: typically the German WIMA capacitors were used and they did indeed justify the excellent reputation that they acquired. Non-inductive resistors were a necessity and the skilled audio engineer could pass judgment on a design before even turning it on – he simply visually inspected the board and saw if the manufacturer knew what he was doing\(^3\).

The Invicta uses surface mount components. These are not common surface mount, but specially selected low inductance and high linearity versions. For example, a common surface mount capacitor would ruin the THD, but the special high linearity types do have the performance needed.

\(^3\)Even the DAC’s had a certain look to them: a 28 pin TSSOP or similar became associated with high quality. The outstanding ESS Sabre DAC did not fit this pre-conception and it was initially dismissed as unlikely to succeed. That has now changed; the ESS Sabre DAC is the acknowledged leader in DAC technology.
Specifications

These specifications are a summary of the data collected and presented in Chapter 1, the Technical Measurement section.

Figure 4.1: Invicta Dimensions

These specifications are a summary - you may refer to the detailed results in Chapter 1.
<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>22.0 (8.66)</td>
<td>cm (in)</td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>28.2 (11.10)</td>
<td>cm (in)</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>5.0 (1.97)</td>
<td>cm (in)</td>
<td>Including feet</td>
</tr>
<tr>
<td></td>
<td>4.4 (1.73)</td>
<td>cm (in)</td>
<td>Without feet</td>
</tr>
<tr>
<td>Weight</td>
<td>2.9 (6.4)</td>
<td>kg (lb)</td>
<td></td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>110 - 130 V</td>
<td>V AC</td>
<td>60Hz, 115v setting</td>
</tr>
<tr>
<td></td>
<td>220 - 250 V</td>
<td>V AC</td>
<td>50Hz, 230v setting</td>
</tr>
<tr>
<td>Fuse Rating</td>
<td>1.0</td>
<td>Amp</td>
<td>Fast, 250V, 1.25in</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>30</td>
<td>Watts</td>
<td></td>
</tr>
<tr>
<td>SD Card File Format</td>
<td>WAV, AIFF</td>
<td></td>
<td>Up to 192kS/s, 24bit</td>
</tr>
<tr>
<td>XLR Output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>4.6 ±5%</td>
<td>Vrms</td>
<td>At 0dB volume</td>
</tr>
<tr>
<td>Impedance</td>
<td>156 ±1%</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Distortion + Noise</td>
<td>< -110 dB</td>
<td>1kHZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 0.00032 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>> 125 dB</td>
<td></td>
<td>A-weighted</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-0.25 dB</td>
<td></td>
<td>at 20kHZ 44.1kS/s</td>
</tr>
<tr>
<td></td>
<td>-1.0 dB</td>
<td></td>
<td>at 50kHZ 192kS/s</td>
</tr>
<tr>
<td></td>
<td>-3.0 dB</td>
<td></td>
<td>at 80kHZ 192kS/s</td>
</tr>
<tr>
<td>RCA Output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>2.3 ±5%</td>
<td>Vrms</td>
<td>At 0dB volume</td>
</tr>
<tr>
<td>Impedance</td>
<td>78 ±1%</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Distortion + Noise</td>
<td>< -110 dB</td>
<td>1kHZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 0.00032 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>> 120 dB</td>
<td></td>
<td>A-weighted</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-0.25 dB</td>
<td></td>
<td>at 20kHZ 44.1kS/s</td>
</tr>
<tr>
<td></td>
<td>-1.0 dB</td>
<td></td>
<td>at 50kHZ 192kS/s</td>
</tr>
<tr>
<td></td>
<td>-3.0 dB</td>
<td></td>
<td>at 80kHZ 192kS/s</td>
</tr>
<tr>
<td>Headphone Output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>5.1 ±5%</td>
<td>Vrms</td>
<td>At 0dB volume</td>
</tr>
<tr>
<td>Impedance</td>
<td>1.0 ±1%</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Distortion + Noise</td>
<td>< -100 dB</td>
<td>1kHZ</td>
<td>unweighted into 60Ω</td>
</tr>
<tr>
<td></td>
<td>< 0.001 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>> 118 dB</td>
<td></td>
<td>A-weighted</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-0.25 dB</td>
<td></td>
<td>at 20kHZ 44.1kS/s</td>
</tr>
<tr>
<td></td>
<td>-1.0 dB</td>
<td></td>
<td>at 50kHZ 192kS/s</td>
</tr>
<tr>
<td></td>
<td>-3.0 dB</td>
<td></td>
<td>at 80kHZ 192kS/s</td>
</tr>
</tbody>
</table>
Bibliography

[1] Julian Dunn and Ian Dennis
The Diagnosis and Solution of Jitter-related Problems in Digital Audio Systems

Technical Details of the Sabre Audio DAC

Inaudible High-Frequency Sounds Affect Brain Activity: Hyper-sonic Effect
American Physiological Society, *Journal of Neurophysiology*, June 2000 vol. 83 no. 6 3548-3558. Available on line as
http://jn.physiology.org/content/83/6/3548.full

Force generation by mammalian hair bundles supports a role in cochlear amplification
Nature, vol 433, 24 February 2005, p 880 Summary available at

[6] Zheng et all
Prestin is the motor protein of cochlear outer hair cell
[7] Y. Bitterman et al
Ultra-fine frequency tuning revealed in single neurons of human auditory cortex

[8] Evan C. Smith and Michael S. Lewicki
Efficient auditory coding
https://camtools.cam.ac.uk/access/content/group/d4fe6800-4ce2-4bad-8041-957510e5aaed/Public/3G3/SmiLew_Nature_06.pdf

[9] Norimichi Kitagawa and Shigeru Ichihara
Hearing visual motion in depth